Exact results for the Kuramoto model with a bimodal frequency distribution.
نویسندگان
چکیده
We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.
منابع مشابه
همگامسازی در مدل کوراموتو روی شبکههای پیچیده با توزیع فرکانس ذاتی دوقلهای
In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...
متن کاملBreaking the symmetry in bimodal frequency distributions of globally coupled oscillators
The mean-field Kuramoto model for synchronization of phase oscillators with an asymmetric bimodal frequency distribution is analyzed. Breaking the reflection symmetry facilitates oscillator synchronization to rotating wave phases. Numerical simulations support the results based of bifurcation theory and high-frequency calculations. In the latter case, the order parameter is a linear superpositi...
متن کاملهمگامسازی در مدل کوراموتو با نیروی وابسته به زمان در شبکههای پیچیده
In this paper, a generalization of the Kuramoto model is introduced by explicit consideration of deterministically time-varying periodic external force. In this model, the oscillator's natural frequencies and amplitude of collective oscillations are influenced by external forces with constant or random strengths. Then, the synchronization behavior of forced Kuramoto model is studied in some com...
متن کاملExistence of hysteresis in the Kuramoto model with bimodal frequency distributions.
We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one due to the shallowness of the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply h...
متن کاملTime delay in the Kuramoto model with bimodal frequency distribution.
We investigate the effects of a time-delayed all-to-all coupling scheme in a large population of oscillators with natural frequencies following a bimodal distribution. The regions of parameter space corresponding to synchronized and incoherent solutions are obtained both numerically and analytically for particular frequency distributions. In particular, we find that bimodality introduces a new ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2009